

Sources of variability in measuring aflatoxin and the role of sampling

Tim Herrman State Chemist and Director, Office of the Texas State Chemist Texas A&M AgriLife Research Professor, Department of Soil and Crop Sciences Texas A&M University

OFFICE OF THE TEXAS STATE CHEMIST

Texas Feed and Fertilizer Control Service
Agriculture Analytical Service

One-Sample Strategy Program Components

Monitoring & Corrective Actions

Management & Recordkeeping

Standardized methods

ApStandardized training Fouriement & Verification of Procedures employee performance

Documented program Training for outcomes

 Möhitöring &
Proficiency Verification
Process
Reduced market and food safety risk

Criteria: Sampling

- Minimum 5-pound sample collected from each incoming truck or trailer
- USDA representative sampling patterns
- 6' spiral hand probe

PATTERN 1: 7 probes for trucks or trailers loaded with grain more than 4 feet deep

PATTERN 2: 9 probes for trucks or trailers loaded with grain less than 4 feet deep

Criteria: Grinding

Grind the entire sample

Collect at least 500 grams of the ground sample

70% of the particles pass through a 20 mesh sieve after grinding

Control Chart

OTSC Monitoring

- Employee performance
- Equipment performance
 - Grinder check
 - Lab scale check
- Control standard record
- Retained sample analysis in an ISO 17025 accredited lab

Performance curve for 2013-2015

Inference about the population

SAMPLING

13

Variance Structure of Aflatoxin Contaminated Maize in Commercial Grain Elevators and Transporters

Variance Source	Percent of Total Variance		
Facility	1.9		
Bin	65.8		
Truck	9.1		
Sampling and Testing Error	23.2		

Herrman et al. JRS 1(1):23-31

Variance Structure of Aflatoxin Contaminated Maize in Commercial Maize Mills in Kenya

Variance Source	Percent of Total Variance		
Mill	0		
Truck	7.8		
Bag	33.3		
Within bag	50.1		
Analytical	3.4		
Error	5.4		

Retaining the representative property of the sample

GRINDING

13

Sample Grinding

Sample Grinding

OFFICE OF THE TEXAS STATE CHEMIST

Developing uniform working controls

13

REFERENCE MATERIAL

Recommendation 9: Sufficient Homogeneity

In testing for sufficient homogeneity, duplicate results from a single distribution unit should be deleted before the analysis of variance if they are shown to be significantly different from each other by Cochran's test at the 99% level of confidence

Sufficient stability

Changes in test material are inconsequential

Period in question is the interval between preparation of the material and the deadline for return of the results

5 samples will be analyzed after the proficiency test

Laboratory uncertainty

13

UNCERTAINTY & VARIABILITY

Uncertainty

ISO 17025 5.4.6.2

 Testing laboratories shall have and shall apply procedures for estimating uncertainty of measurement...

Reasonable estimation shall be based on knowledge of the performance of the method and on the measurement scope and shall make use of, for example, previous experience and validation data

Uncertainty Budget

 List all potential factors affecting variability in measurements –make table
Determine the standard uncertainty for each factor including distribution
Perform root sum squares for all factors to create the combined or standard uncertainty

$$S_I = \sqrt{S_a^2 + S_b^2 \dots S_x^2}$$

Multiply by coverage factor: 2

OTSC Uncertainty Measurement Estimation

		T I			
Analyte	Procedure	Mean	Std. Dev.	CV	Uncertainty
Aflatoxin	HPLC	21.6	2.2	10.1	20.2
Aflatoxin	ELISA	24.6	3.7	15.1	30.3
Aflatoxin	LC/MS/MS	22.7	3.0	13.4	26.8
Aflatoxin	UHPLC	21.8	3.3	15.0	30.1
Aflatoxin	Fluoroquant	22.5	3.2	14.0	28.0
Fumonisin	LC/MS/MS	7.8	0.08	8.8	17.7

One of the Big Three

PROFICIENCY TEST RESULTS

APTECA Proficiency Testing Program

Corn Meal Sample #4

Proficiency Testing Performance

APTECA group qualification exercises

OFFICE OF THE TEXAS STATE CHEMIST

Sources of Variability

13

SUMMARY

Cause and Effect Diagram

Uncertainty Budget for Total Variability

Uncertainty Budget for Total Variability

SOURCES OF VARIABILITY IN MEASURING AFLATOXIN AND THE ROLE OF SAMPLING

A continuous improvement approach to define, measure, and control aflatoxin helped reduce food safety risk.

Acknowledgements

Office of the Texas State Chemist Personnel Cindy McCormick, Carlton Peterson K.M. Lee, Susie Dai, Anne Muiruri **Cereal Millers Association & members** Others Vivian Hoffman Jagger Harvey Appoliniare Djikeng Josephine Birungi Harinder Makkar **Rosemary Bichara Charles Manara**

OFFICE OF THE TEXAS STATE CHEMIST

Texas Feed and Fertilizer Control Service
Agriculture Analytical Service

